The vapor-liquid interface potential of (multi)polar fluids and its influence on ion solvation.

نویسندگان

  • Lorand Horváth
  • Titus Beu
  • Manoel Manghi
  • John Palmeri
چکیده

The interface between the vapor and liquid phase of quadrupolar-dipolar fluids is the seat of an electric interfacial potential whose influence on ion solvation and distribution is not yet fully understood. To obtain further microscopic insight into water specificity we first present extensive classical molecular dynamics simulations of a series of model liquids with variable molecular quadrupole moments that interpolates between SPC/E water and a purely dipolar liquid. We then pinpoint the essential role played by the competing multipolar contributions to the vapor-liquid and the solute-liquid interface potentials in determining an important ion-specific direct electrostatic contribution to the ionic solvation free energy for SPC/E water-dominated by the quadrupolar and dipolar parts-beyond the dominant polarization one. Our results show that the influence of the vapor-liquid interfacial potential on ion solvation is strongly reduced due to the strong partial cancellation brought about by the competing solute-liquid interface potential.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ginzburg-Landau theory of solvation in polar fluids: Ion distribution around an interface.

We present a Ginzburg-Landau theory of solvation of ions in polar binary mixtures. The solvation free energy arising from the ion-dipole interaction can strongly depend on the composition and the ion species. Most crucial in phase separation is then the difference in the solvation free energy between the two phases, which is the origin of the Galvani potential difference known in electrochemist...

متن کامل

On the fluctuations that drive small ions toward, and away from, interfaces between polar liquids and their vapors.

Contrary to the expectations from classic theories of ion solvation, spectroscopy and computer simulations of the liquid-vapor interface of aqueous electrolyte solutions suggest that ions little larger than a water molecule can prefer to reside near the liquid's surface. Here we advance the view that such affinity originates in a competition between strong opposing forces, primarily due to volu...

متن کامل

Ion-induced nucleation in polar one-component fluids.

We present a Ginzburg-Landau theory of ion-induced nucleation in a gas phase of polar one-component fluids, where a liquid droplet grows with an ion at its center. By calculating the density profile around an ion, we show that the solvation free energy is larger in gas than in liquid at the same temperature on the coexistence curve. This difference much reduces the nucleation barrier in a metas...

متن کامل

VLE Properties from ISM Equation of State: Application to Pure and Mixture

In this paper, the vapor-liquid equilibrium (VLE) properties of polar and nonpolar fluids are modeled by the use of a statistically-based equation of state (EOS). The equation of state used in this work is that of Ihm-Song-Mason (ISM) EOS. An alternative approach is to revise the isothermal integration on liquid. In this respect, a temperature-dependent revision factor b (T) is introduced to th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 138 15  شماره 

صفحات  -

تاریخ انتشار 2013